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Direct vegetation response to recent CO2 rise
shows limited effect on global streamflow

Haoshan Wei 1,2, Yongqiang Zhang 1 , Qi Huang1,2, Francis H. S. Chiew3,
Jinkai Luan1, Jun Xia 4 & Changming Liu 1

Global streamflow, crucial for ecology, agriculture, and human activities, can
be influenced by elevated atmospheric CO2 (eCO2) though direct regulation of
vegetation physiology and structure, which can either decrease or increase
streamflow. Despite a 21.8% rise in CO2 over 40 years, its impact on streamflow
is not obvious and remains highly debated. Using a full differential approach at
the catchment scale and an optimum finger approach globally, both con-
strained by observed streamflow, here, we find that vegetation responses to
eCO2 in 1981–2020 has limited impact on streamflow via direct regulation. The
median eCO2 contribution approaches zero across 1116 unimpacted catch-
ments, and global streamflow changes cannot be solely attributed to eCO2.
These results offer key insights into the intricate dynamics of CO2 and other
factors shaping streamflow changes over the past four decades. Such under-
standing is vital for attributing current streamflow changes under eCO2

conditions.

Streamflow is a vital freshwater resource, an important component of
the global water supply1. Understanding changes in streamflow and
their causation over an extended period is crucial for effective water
resources management and availability analysis. Over recent decades,
the Earth’s land has undergone dramatic climate variations, expected
to result in noticeable alterations in streamflow.

Atmospheric CO2 plays a pivotal role in driving climate change,
modulating the global water cycle, and influencing land surface
dynamics. Elevated atmospheric CO2 (eCO2) can impact changes in
streamflow through direct regulation of vegetation physiology and
structure2–8, as well as through indirect effects on radiation and
temperature9–12 that influence precipitation and potential
evapotranspiration4,13–15. Regarding direct regulation, eCO2 can induce
two major opposing impacts on streamflow: an increasing effect
resulting from reduced leaf transpiration due to stomatal closure3,7,8

and reduced soil evaporation due to expanded leaf area16,17. There is
also a reducing effect stemming from increased transpiration and
intercepted evaporation6,18 caused by expanded leaf area. Although
precipitation, meteorological inputs, and CO2 concentrations are

typically treated as separate inputs in land surface models, the reg-
ulation of eCO2 on climate and associated feedbacks are often inte-
grated into climate change assessments2,18–23. Therefore, the impact of
eCO2 on streamflow in this study specifically refers to the direct reg-
ulation outlined in Supplementary Fig. 1.

How the eCO2 influences on streamflowvia the direct and indirect
regulations, or whether eCO2 increases or decreases streamflow,
remains controversial and uncertain. Some studies emphasize a strong
and positive contribution of eCO2 to increased streamflow due to the
water-saving effect caused by stomatal closure3,7,17,24. Others indicate
that recent global streamflow changes are primarily attributed to
climate2,13,25–27 and land use changes2,28,29. Gedney et al. 3 and Piao et al. 2

obtained inconsistent results on streamflow attribution over the last
century through different global models, suggesting uncertainty in
global modeling30. Importantly, a lack of observational support con-
tributes to low confidence in eCO2 impact modeling results8,31. This is
mainly because available studies on historical eCO2 impact on
streamflow have focused on the second half of the last century2,3,28 or
before 20106,13,32, or on short periods2,5,24 ranging from one to three

Received: 20 January 2024

Accepted: 23 October 2024

Check for updates

1Key Laboratory ofWater Cycle and Related Land Surface Processes, Institute of Geographic Sciences andNatural Resources Research, Chinese Academy of
Sciences, Beijing 100101, China. 2University of Chinese Academy of Sciences, Beijing 100049, China. 3CSIRO Environment, Black Mountain, Canberra ACT
2601, Australia. 4State Key Laboratory of Water Resources and Hydropower Engineering Sciences, Wuhan University, Wuhan, China.

e-mail: zhangyq@igsnrr.ac.cn; xiajun666@whu.edu.cn

Nature Communications |         (2024) 15:9423 1

12
34

56
78

9
0
()
:,;

12
34

56
78

9
0
()
:,;

Content courtesy of Springer Nature, terms of use apply. Rights reserved



decades. Despite a 21.8% increase in atmospheric CO2 concentration
from 1981 to 2020 triggering pronounced global warming33,34, how
vegetation response to eCO2 influences streamflow at catchment and
global scales remains largely unknown. Thus, we aim to utilize a large
streamflow dataset along with two state-of-the-art modeling frame-
works to unravel the role of eCO2 in streamflow changes over the past
four decades via the direct vegetation regulation.

Results
Catchment scale contributions
We initiated our study by extracting the influences of climate change
and eCO2 on streamflow components from catchments with lengthy
observation records, with little human activities in the past 40 years.
We employed observed streamflow data from 1116 unimpacted
catchments, carefully selected from a vast dataset encompassing over
20,000 catchments worldwide. These specific catchments boast more
than 30 years of streamflow observations, exhibit minimal human
intervention, and maintain consistent vegetation types (Methods).
This unique selection allows us to meticulously disentangle the
impacts of precipitation, potential evapotranspiration, and atmo-
spheric CO2 concentration on streamflow through a fully differential
method based on the observed datasets.

The analysis at the catchment scale reveals that precipitation is
the primary driver of streamflow changes (Fig. 1a), contributing over
70% to the overall absolute relative contribution (Fig. 1d). While an
increase or decrease in precipitation can respectively lead to increases
or decreases in streamflow for different catchments, the selected
catchments overall exhibit a positive contribution from precipitation
(Fig. 1d). Potential evapotranspiration accounts for less than20%of the
absolute relative contribution to overall streamflow changes (Fig. 1d),
and in most catchments, it contributes negatively to streamflow
changes (Fig. 1b, d).

In contrast, the contribution of eCO2 to streamflow is con-
siderably lower than that of climate change factors (precipitation and
potential evapotranspiration), as depicted in Fig. 1d. The absolute
relative contribution of eCO2 is less than 8% overall, with amedian real
relative contribution close to 0. No clear statistical evidence shows
that eCO2 provides either a positive or negative contribution to

streamflow overall (Fig. 1d). Moreover, the contribution of eCO2 to
streamflow shows certain spatial pattern (Fig. 1c). For example, eCO2 in
southeastern North America shows an overall positive contribution to
streamflow, while eCO2 in eastern Oceania shows an overall negative
contribution to streamflow.

Global scale attribution
Subsequently, we employed 14 global ecological models, which were
simulated based on observed annual streamflow constraint scenarios
of large basins. We then derived four observationally constrained
models for our analysis, attribution, and uncertainty studies on global
streamflow changes. The regularized optimal fingerprinting method
(ROF) was applied for streamflow attribution, utilizing a dataset of pre-
industrial revolution-controlled streamflow variability from 47 Earth
SystemModels to represent internal variability. The ROF is a statistical
method for attribution by evaluating the internal variability of
streamflow and combining it with the statistical relationship between
changes in streamflow itself and changes in streamflow driven by
external forcing variables to obtain a “fingerprint” or a scale factor. In
this paper, an uncertainty analysis was also conducted to evaluate
internal variability using different datasets (see Methods).

The attribution analysis results indicate that global streamflow
remains relatively stable overall, evident in both the global trend pat-
tern and the area-weighted streamflow trend. More than 80% of global
grids exhibit a non-significant increase in streamflow trends, with less
than 5% showing a significant change (Fig. 2a). The global area-
weighted streamflow displays a non-significant increase, with a trend
of 0.09 ± 0.05mm/yr² over the last 40 years (Fig. 2b). Excluding
deserts for the global average obtains a similarly non-significant
increase trend of 0.13 ± 0.05mm/yr² (Supplementary Fig. 9b). In
essence, the globally insignificant changes in streamfloware attributed
exclusively to climate change,with no compelling evidence supporting
a significant impact of eCO2 on streamflow.

In Fig. 2c, the scale factor for climate change exhibits strong
consistency in both single and multifactor cases, consistently greater
than 0 and inclusive of 1. This suggests that the annual changes in
streamflow over the past 40 years can be consistently and reliably
attributed to climate change (also in Supplementary Fig. 17). However,

Fig. 1 | Contributions of precipitation (P), potential evapotranspiration (ETp), and
elevated atmospheric CO2 concentration (eCO2) to streamflow changes across
1116 unregulated catchments during the period 1981–2020. a Spatial patterns
illustrating the relative contribution of precipitation to streamflow. b Spatial pat-
terns illustrating the relative contribution of potential evapotranspiration to

streamflow. c Spatial patterns illustrating the relative contribution of elevated
atmospheric CO2 concentration to streamflow. d Box plots showing the relative
contributions of the three factors to streamflow across the 1116 catchments. In each
box plot, the whiskers represent the 90th and 10th percentiles, and the box is
outlined by the 75th, 50th, and 25th percentiles.
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eCO2 and land-use change cannot be reliably linked to these stream-
flow changes, especially in the multifactor case. In the multifactor
scenario, the scale factors for these two variables fluctuate drastically,
implying that their impact on streamflow is much less significant than
their influence on climate change.

Uncertainty analysis
Utilizing observation-constrained modeling significantly diminishes
the uncertainty inherent in the original 14 models when estimating
global streamflow trends and attribution results. Initial estimates of

streamflow trends from these models exhibit considerable variation,
with some suggesting a noteworthy increase in global streamflow
and one model proposing a decline, covering a range of −0.20 to
0.40mm/yr² (Supplementary Fig. 2). The application of observation-
constrainedmodeling effectively reduces this uncertainty, achieving
a 62.0% reduction in standard deviation. This results in a more pre-
cise and stable trend estimate (Fig. 3a).

In the application of the optimal fingerprinting method, the
choice of diverse datasets for internally assessing global streamflow
introduces significant uncertainty into the attribution results across all

Fig. 2 | Trends, changes and attribution of global streamflow based on
observation-constrained models in 1981-2020. a Spatial pattern of 40-year
streamflow annual trends obtained from four observation-constrainedmodels. SD,
D, I, SI denote significant decrease, insignificant decrease, insignificant increase,
and significant increase at the significant level of α =0.05 (Mann–Kendall test),
respectively. Purple dots in global map indicate that the trend is significant. b 40-
year global area-weighted anomaly streamflow time series and trends for the four
observation-constrainedmodels (mean ± 1std), and pmin represents theminimum p

value from the four models. c Attribution results for global area-weighted
streamflow changes for the four observation-constrained models, with 90% upper
and lower bounds andmedian values for the scale factor of the regularized optimal
fingerprinting method being the median of the corresponding values for the four
models. If the range of the scale factor at the 90% significance level is greater than0
and contains 1, the driving factor (climate change (CLI), elevated CO2 (eCO2), and
land-use change (LUC)) can be attributed; otherwise, it cannot.

Fig. 3 | Global comparison of annual trend and attribution uncertainty.
a Estimates of global streamflow trends. Observed modeling is the mean ± 1 std of
the trends from the four observation-constrainedmodels, and the unconstrained is
the mean ± 1 std of the trends from the 14 global ecological models. b Probabilities
of attributing global streamflow to climate change (CLI), elevated CO2 (eCO2), and

land-use change (LUC) for observation-constrained modeling and all models in
TRENDY when different datasets are selected to assess the internal variability of
streamflow. The bar error in (b) is the one standard deviation of a truncated normal
distribution, ranging in 0–100%.
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the TRENDYmodels (Fig. 3b). There exists a probability of attributing a
change in global streamflow either to eCO2 or not attributing it to
climate change. However, when utilizing the observation-constrained
results, the change in global streamflow consistently attributes to cli-
mate change but not to eCO2. This highlights a substantial reduction in
uncertainty in the attribution results.

Discussion
Our study uses two frameworks to investigate the impacts of the
recent rise in CO2 on streamflow, focusing on direct vegetation reg-
ulation with different considerations. At the small catchment scale, we
use the fully differential method, which is not specifically designed to
isolate the effects of land-use change on streamflow. Therefore, we
carefully select stable catchments that are minimally affected by
anthropogenic impacts and vegetation type changes, while also
excluding potential impacts of groundwater-streamflow interactions35.
At the global scale, weuse the optimalfingerprintingmethod to isolate
the impacts of eCO2, climate change, and land-use change on global
streamflow. Both frameworks show robust results, indicating that
vegetation responses to the recent rise inCO2 exert limited impacts on
streamflow at both catchment and global scales.

It is worth noting that neither of the two frameworks has the
capability to investigate the response of climate variables (e.g., pre-
cipitation) to vegetation feedback under eCO2. On one hand, variables
such as precipitation are used as forcing data for land-surface and
statistical models, and vegetation feedback is embedded within cli-
mate forcing. On the other hand, it is challenging to validate the
accuracy of vegetation feedback simulations based on observations.
These limitations restrict our study to investigating how eCO2 has
influenced streamflow changes over the past four decades through
direct vegetation regulation.

We notice that several factors contribute to the uncertainty of the
increment-based fully differential method for small catchments (see
Methods), including catchment selection and multicollinearity issues
among the driving factors, model structural errors and uncertainty in
forcing and training datasets. The uncertainty in the fully differential
method increases with the size of the catchment area (Supplementary
Fig. 10). Larger catchments are more susceptible to anthropogenic
change impacts. In our study, more than 74% of the selected catch-
ments have a catchment area of less than 2000 km2, indicating that the
majority of catchments have a low likelihood of experiencing strong
anthropogenic changes. In the small catchments, it is also impossible
to completely eliminate the anthropogenic impacts. Furthermore,
precipitation, potential evapotranspiration, and eCO2 used in the fully
differential method are relatively independent, and there are no col-
linearity issues36, as indicatedby Variance Inflation Factor values of less
than 5.0 (Supplementary Fig. 11). We also notice that the possible
impacts from streamflow observation errors that largely vary from 3%
to 6%37–40. To test the impact magnitude, we conduct the Monte Carlo
simulations (see SupplementaryMethod4), and find the impact is very
small. Specifically, the 10% maximum streamflow error produces an
uncertainty in contribution of eCO2 less than 0.5% for 50% of the
selected catchments and less than 0.6% for 75% of the selected
catchments (Supplementary Fig. 18). Compared to that, the errors in
precipitation generate slightly higher uncertainty in annual stream-
flow, but it is smaller than the reported precipitation-streamflow error
propagation simulated using a process-based hydrological model41.
Based on the uncertainty analysis, we suggest that the fully differential
approach is applicable and robust.

The spatial pattern of eCO2 contribution to streamflow depicted
in Fig. 1c can be attributed to vegetation types (density) and climate
regimes.Weobserved that in forest-dominated catchmentswith a high
leaf area index (as detailed in the Methods), eCO2 exhibits an overall
positive contribution to streamflow in North America (Supplementary
Fig. 12a), an overall negative contribution in Oceania (Supplementary

Fig. 12c), and a transition from an overall negative to a positive con-
tribution in South America (Supplementary Fig. 12b). In catchments
dominated by various vegetation types, the absolute relative con-
tribution of eCO2 to streamflow in tropical regimes is generally higher
than in temperate and cold climate regimes (see SupplementaryFig. 3).
However, despite the above discussion, the contribution of eCO2 to
streamflow remains very limited,with an absolute relative contribution
of about 10%or less for the selected catchments, and anoverall relative
contribution close to 0 (Fig. 1d, Supplementary Fig. 3 and Supple-
mentary Fig. 12d). This is far behind precipitation and potential
evapotranspiration.

Furthermore, we investigated whether considering vegetation
phenology would noticeably impact our results. We focused on
catchments outside the equator and conducted the same analysis but
only for vegetationgrowing seasons (April toOctober for theNorthern
Hemisphere and October to April for the Southern Hemisphere). The
results obtained from the growing seasons mirrored those obtained
from the entire calendar year (see Supplementary Fig. 13), further
affirming the robustness of our findings.

In the global models, the direct impact of eCO2 on streamflow is
influenced by two opposing factors. On one hand, an increase in vege-
tation water use efficiency due to eCO2 can lead to a direct increase in
streamflow, as dictated by the stomatal conductance equation in the
models42–45. Conversely, eCO2 is a dominant factor in global greening18,
causing an expansion in leaf area and consequently an increase in vege-
tative water consumption, ultimately reducing streamflow6. The sub-
stantial eCO2 levels observed from1981 to 2020, coupledwith the overall
insignificant increase in annual streamflowand theminimal attributionof
eCO2 to streamflow (in Fig. 2, and the same results are in the non-desert
region, as shown in Supplementary Fig. 9), suggest that the response of
global streamflow change to eCO2 is highly limited, which may be
attributed to several factors. Firstly, the effects of global greening and
stomatal closuremay counteract each other at a regional to global scale.
Secondly, the impacts of eCO2 on vegetation could be relatively small.
Thirdly, complex feedback mechanisms remain poorly understood,
although observation-constrained models show that the interactive
effects of eCO2 and climate change on streamflow (see Methods) are of
the same order of magnitude as the effects of eCO2 on streamflow, and
both are much smaller than the effects of climate change on streamflow
(Supplementary Fig. 19).

We also analyze trends in individual water balance components
over the past 40 years based on the TRENDY models. These models
obtain overall the increasing trends in global evapotranspiration and
streamflow, but have a large range in their values. Furthermore, there
exists a high uncertainty in these models for partitioning evapo-
transpiration comments: transpiration, canopy evaporation, and soil
evaporation (Supplementary Fig. 20). However, these models achieve
reasonable balance in the water balance trends, i.e. trends in pre-
cipitation similar to the sum of trend in streamflow and trend in eva-
potranspiration (Supplementary Figs. 20, 21). These models show the
competing effects between the trend in streamflow and the trend in
evapotranspiration, i.e. a high trend in streamflow companied by a low
trend in evapotranspiration, and vice versa.

While all models successfully simulate annual variability in
streamflow when compared to observations (Supplementary Fig. 4b),
significant uncertainty persists in trends and attribution results at a
global scale (Fig. 3). The application of observational constraints can
substantially reduce uncertainty among different models46. However,
it is important to acknowledge the challenge in achieving high accu-
racy in both simulated streamflow interannual trends and variations
(Supplementary Fig. 4b, c). Constraining models based solely on
streamflow variability might lead to higher estimates of global trends
(Supplementary Fig. 2). This realization underscores the importanceof
not only constraining models based on annual streamflow values but
also considering annual streamflow trends. The global model
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uncertainty on a broad scale underscores the need for cautious
assessments of streamflow changes14.

Methods
Observed streamflow data and forcing data
We utilized annual streamflow data from a comprehensive dataset
comprising over 20,000 catchments, gathered from publicly available
sources47–53 and national statistical bulletins. A subset of 1116 small to
mediumcatchments and 44 large basins were chosen for our study. To
align with our research objectives, specific criteria were applied to
select 1116 unimpacted catchments: catchment areas below
100,000 km², land use/vegetation types area changes under 5%
(dataset from HILDA+ (HIstoric Land Dynamics Assessment + )54,55

including: urban areas, cropland, pasture/rangeland, forest, unma-
naged grass/shrubland, and sparse/no vegetation), absence of reser-
voir regulation (reservoir capacity divided by multi-year average
streamflow is 0), irrigated area less than 5% (Global Map of Irrigation
Areas (GMIA), https://www.fao.org/land-water/land/land-governance/
land-resources-planning-toolbox/category/details/en/c/1029519/),
consistent vegetation types, and continuous observations spanning
over 30 years (see Supplementary Fig. 5a). Among these catchments,
48.7% had an area less than 500 km², 25.4% ranged between 500 and
2000 km², 18.6% fell between 2000 and 10,000 km², and 7.3% excee-
ded 10,000 km². To strengthen our results, we further excluded
catchments with abrupt shifts in runoff coefficients, resulting in 550
catchments. Details are provided in Supplementary Method 1 and
Supplementary Fig. 14, and the corresponding results are summarized
in Supplementary Fig. 15, which is similar to the results presented
in Fig. 1.

Additionally, 44 large basins, each larger than 100,000km², were
selected having good data availability (each having no less than 36 years
of observation andmore than 90% catchments withmissing percentage
less than 1%) (see Supplementary Data 1 for details), covering 24.3% of
the global land area (see Supplementary Fig. 5b). For the large basins,
missing monthly data were interpolated through the G-RUN dataset56,
subject to a Nash-Sutcliffe efficiency threshold57 of not less than 0.6 for
non-missingmonths in both G-RUN and these catchments. Basins failing
this criterion were excluded, and the boundaries of large basins were
separately delineated58.

Climate classifications are derived from the Köppen-Geiger cli-
mate classification maps59. A catchment is considered to have a con-
sistent vegetation type if the percentage of one vegetation type is
greater than 50% for all 40 years of the catchment. A catchment is
dominated by a particular climate or vegetation type if that climate or
vegetation type constitutes the largest portion of the catchment.
Three types of reservoir data were used in the screening of the 1116
catchments: Basin ATLAS60, GRanD V1.361, and GDAT62. Reservoir
impacts were calculated by dividing the reservoir flow by the average
multi-year streamflow in the catchment, with a reservoir impact of 0
indicating the absence of reservoir regulation. Precipitation and
potential evapotranspiration for the fully differential method were
sourced from MSWEP V2.863 and MSWX64. Leaf area index data were
sourced from GIMMS3g_V4_165.

Trend analysis
Trends were determined using the robust Sen-slope estimator66,
known for its resilience against outliers. The significance of the trends
was assessed through the Mann-Kendall test67,68. A trend was deemed
significant if the p value of the statistical test was less than 0.05;
otherwise, the trend was considered not significant.

Fully differential method for catchment scale contribution
analysis
We have developed a fully differential method to assess the con-
tributions of eCO2 and climate change to streamflow. The observed

streamflow (Qobs) within a catchment is expressed as a function of
hydroclimatic variables (Eq. (1)):

Qobs = F X 1,X2, � � � ,Xn

� � ð1Þ

where Xi i= 1, 2, � � � ,nð Þ denotes hydroclimatic variables. The fully dif-
ferential form for streamflow increment is represented as:

dQ=
X

i

∂F
∂Xi

dXi ð2Þ

where dXi is the increment in the driving variable. We hypothesize that
streamflow trends primarily result from three key drivers: annual
precipitation (P), annual potential evapotranspiration (ETp), and
annual CO2 (CO2). We approximate Eq. (2) with the annual increments
of the regression variables through a standardizedmultiple regression
process (Eq. (3)):

Δqj

n o

j2N
=
X

i

ki Δxi, j
n o

j2N
+ δ ð3Þ

where Δqj
n o

j2N
is the time series of the standardized streamflow

increment, j is time point and N is the natural number indicator set,

similarly, Δxi, j
n o

j2N
is the time series of the standardized i-th driving

variable increment, ki is the standardized regression coefficient of the
i-th driving variable increment, δ is the uncertainty term. For a given

variable x̂i, j

n o

j2N
, the increment is calculated as Δx̂i, j = x̂i, j + 1 � x̂i, j and

the normalization process is Δxi, j =
Δx̂i, j�MEAN Δx̂i, jf gj2N

� �

STD Δx̂i, jf gj2N
� � . It is noted that

MEAN and STD are mean and standard deviation, respectively. By
performing standardized linear regressions relating annual increments
in these dominant factors to annual streamflow increments, we obtain
regression coefficients for annual precipitation (kP), annual potential
evapotranspiration ðkETp

Þ, and annual CO2ðkCO2
Þ. The standardized

regression coefficients represent the relative contribution of the
independent variables to the dependent variable, and trends are an
expression of the accumulation of “increments”. Therefore, the
streamflow changes driven by each factor (Xi) can be expressed as
dQobs Xi

= kXi
� Trend Qð Þ
�� ��, and CO2-driven streamflow changes are

ΔQobs CO2
= kCO2

� Trend Qð Þ
�� �� ð4Þ

whereTrend �ð Þ is the trend of the annual variable. The absolute relative
contribution and real relative contribution are calculated according to
the formula: jΔQobs Xi

j=ðjΔQobs P j+ jΔQobs ETp
j+ jΔQobs CO2

jÞ,ΔQobs Xi
=

ðjΔQobs P j+ jΔQobs ETp
j+ jΔQobs CO2

jÞ, respectively.

The reliability of the method is confirmed by goodness-of-fit (R²)
spatial map and cumulative distribution figures (Supplementary
Fig. 6a, b). R2 in 75% catchments is greater than 0.55, and in 50%
catchments is greater than 0.7. Additionally, potential evapo-
transpiration is calculated using the improved FAO Penman Monteith
method (FAO Penman Monteith [Yang])17, and the results from dif-
ferent potential evapotranspiration formulas exhibit extremely similar
correlation coefficients and goodness-of-fit in Eq. (3), as shown in
Supplementary Fig. 7. In addition, we evaluate the multicollinearity
issue among the driving factors by the Variance Inflation Factor (VIF),
where VIF less than 5 is considered to have nomulticollinearity among
the variables and VIF greater than 10 indicates a strong
multicollinearity36. The expressions of the equations for the fully dif-
ferential method and the elasticity coefficient method14,69 are similar.
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In contrast to the elasticity coefficient method, the fully differential
method requires the consideration of all potential driving variables,
which is the key reason for the rigorous screening of the catchments.

Global ecological models
We employed 14 state-of-the-art process-based global ecological
models to assess and attribute streamflow changes, obtained from
latest TRENDY phase 1121,70. These models, including CABLE-POP71,
CLASSIC72, CLM5.073, DLEM74, IBIS75, ISAM76, ISBA-CTRIP77, JSBACH78,
JULES79,80, LPJ-GUESS81, LPX-BERN82, ORCHIDEE83, SDGVM84 and VISIT-
NIES85, are widely used for evaluating hydrological effects and
attributions2,22,86.

The model results were provided through the TRENDY project
(https://sites.exeter.ac.uk/trendy), specifically from the S3 scenario
simulations, whichconsider all forcingdata (eCO2, climate change, and
land use change) as time-varying and are deemed to be most repre-
sentative of the real world18,22. Half of these models have a spatial
resolution of 0.5°×0.5°. To facilitate calculations, all model results
were resampled to a spatial resolution of 0.5°×0.5° using bilinear
interpolation, as needed, for consistency in spatial representation.
Model details are summarized in Supplementary Method 3 and Sup-
plementary Data 2.

Using TRENDY model experiments, we can partition the trend in
streamflow into three components: CO2-driven, climate-driven, and
interactive effects of climate change and CO2. The CO2-driven
streamflow trend from TRENDY models is:

ΔQCO2
= Trend QS1 � QS0

� �
ð5Þ

where ΔQCO2
is the CO2-driven streamflow trend from TRENDY mod-

els; Trend �ð Þ is the function to calculate the trend, Sen-slope estimator
is usedhere;QS0,QS1 are the streamflowfromS0, andS1 in theTRENDY
control scenarios (see Supplementary Method 3).

The climate-driven streamflow trend from TRENDY models is:

ΔQCLI =Trend QS2 �QS1

� � ð6Þ

where ΔQCLI is the climate-driven streamflow trend from TRENDY
models; Trend �ð Þ is same as Eq. (5);QS2 is the streamflow from S2 in the
TRENDY control scenarios (see Supplementary Method 3).

The streamflow trend driven by CO2 and climate from TRENDY
models is:

ΔQCO2 CLI =Trend QS2 �QS0

� �
ð7Þ

where ΔQCO2 CLI is the streamflow trend driven by CO2 and climate
from TRENDY models; others are same as Eqs. (5) and (6).

Therefore, the streamflow trend driven by the interactive effects
of climate change and CO2 from TRENDY models is:

ΔQInteraction =ΔQCO2 CLI � ΔQCO2
� ΔQCLI ð8Þ

where ΔQInteraction is the streamflow trend driven by the interactive
effects of climate change and CO2 from TRENDY models. The CO2-
driven and climate-driven (combination of precipitation and potential
evapotranspiration) streamflow trend calculated by the fully differ-
ential method can be deduced from Eq. (4), which corresponds to Eqs.
(5) and (6).

Observation-constrained modeling
We developed four observation-constrained models based on the
annual observed streamflow values and trends. For each continent, we
pursued two approaches: (1) maximizing the Nash-Sutcliffe efficiency
(NSE) of the model-simulated annual streamflow series against the
observed annual streamflow series to derive the value-constrained

models (two types: single, named Best-VAS-SM, and multi-model
ensemble, named Best-VAS-EM), and (2) minimizing the Root Mini-
mum Mean Square Error (RMSE) of the model-simulated annual
streamflow trend against the observed annual streamflow trend to
obtain the trend-constrained models (two types: single, named Best-
TAS-SM, and multi-model ensemble, named Best-TAS-EM) (See Sup-
plementary Method 2 for details). The multi-model ensemble models
involved an averaging process, followed by an optimization algorithm
(Strategic Random Search87) to identify optimal values. The results of
the model selection are depicted in Supplementary Fig. 4a, and vali-
dation of modelled trends for the 44 large basins is shown in Supple-
mentary Fig. 8 and Supplementary Fig. 16.

Regularized optimal fingerprint method for attribution analysis
We employed the optimal fingerprint method (OF) for global attribu-
tion analysis, specifically using the regularized OF (ROF), which
enhances OF by eliminating the stage parameter determination in the
Empirical Orthogonal Function projection. This refinement con-
tributes to increased accuracy88. The core equation for ROF remains
consistent with OF:

y=
Xl

i= 1

βixi + ϵ ð9Þ

where y represents the streamflow (obtained from TRENDYmodels or
observation-constrained estimates in this context), xi is the response
to the i-th external forcing variable, derived from the TRENDY control
scenarios described in Supplementary Method 3, βi is an unknown
scaling factor, and ϵ denotes the internal streamflow variability,
computed from the pre-industrial revolution-controlled (CTL) from
the Earth SystemModels (ESMs) in CMIP689 (A total of 47models were
collected, as shown in Supplementary Data 3). y, xi, and ϵ consist of
spatio-temporal vectors. When βi and its 90% confidence interval are
both greater than 0 and contain unity, changes in streamflow can be
attributed to the i-th external forcing.

In this study, both single-factor (or single-signal) and multi-factor
(or multi-signal) analyses were employed throughout the attribution
process. Single-factor analysis provides a quick and simple way to
determine whether a variable can be attributed or not. In contrast,
multi-factor analysis tests the robustnessof the attribution results for a
single-factor variable, especially when other variables are added to
attribution simultaneously.

However,weobserved a heavy reliance of ϵon theCTLdataset. To
construct noisy covariances of internal streamflow variability, we
extracted non-overlapping 80-year data blocks (twice the length of
1981–2020) from various available CTLs in the Earth System Models
(ESMs) randomly. For each experiment, no less than 24 ESMs were
randomly selected through uniform distribution. Each 80-year data
block was then split into two 40-year data blocks, from which we cal-
culated the area-weighted annual mean streamflow anomaly. This
process yielded two independent matrices, one for determining the
noise covariance and the other for testing residual consistency88,90.
Subsequently, this experiment was repeated 100 times to account for
variations in results due to different CTL model selection processes.

To enhance the reliability of the results by reducing temporal
dimensions, we chose multi-year non-overlapping means for further
calculation. Previous studies often employed means over 3-year12,18,22,
5-year91, and 11-year92 periods. However, due to the limited 40-year
streamflowdata in this paper, we selected non-overlappingmeans of 3-
year, 4-year, and 5-year durations for the calculation, resulting in a total
of 300 sets of results.

If changes in streamflow can be attributed to a variable xi (climate
change, eCO2, and land use change), then the probability that it can be
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attributed is given by:

Pxi
=
Axi

N
× 100% ð10Þ

where Axi is the number of times that xi can be attributed, and N is the
total number of times, which is 300 in this case.

Data availability
Source data are provided with this paper. More detailed data for our
analyses are provided from the following link: https://zenodo.org/
records/13908543 93. Other publicly available datasets include: the
Global Runoff DataCentre (GRDC) (https://www.bafg.de/GRDC/EN/01_
GRDC/grdc_node.html); Dai’s update streamflow (DAI) (https://rda.
ucar.edu/datasets/d551000/); Service d’observation des ressources en
eaux du bassin de l’Amazone (SO-HyBam) (https://hybam.obs-mip.fr/);
the Catchment Attributes and Meteorology for Large-sample Studies
(CAMELS) (https://gdex.ucar.edu/dataset/camels.html); the African
Database of Hydrometric Indices (ADHI) (https://dataverse.ird.fr/
dataset.xhtml?persistentId=doi:10.23708/LXGXQ9); the China River
Sediment Bulletin (CRSB) (http://www.irtces.org/nszx/cbw/hlnsgb/
A550406index_1.htm); the Global Streamflow Indices and Metadata
Archive (GSIM) (https://doi.pangaea.de/10.1594/PANGAEA.887477);
Peterson’s streamflow dataset (https://github.com/peterson-tim-j/
HydroState/tree/master); the Global Runoff Ensemble (G-RUN)
(https://doi.org/10.6084/m9.figshare.12794075); the HIstoric Land
Dynamics Assessment+ (HILDA + ) (https://doi.pangaea.de/10.1594/
PANGAEA.921846?format=html#download). Reservoir data sets:
BasinATLAS; theGlobalReservoir andDamdatabaseV1.3 (GRanDV1.3)
(https://www.globaldamwatch.org/grand); the Global Dam Tracker
(GDAT) (https://doi.org/10.5281/zenodo.6784716); the Köppen-Geiger
Climate Classification Maps (https://www.gloh2o.org/koppen/); the
Multi-Source Weighted-Ensemble Precipitation V2.8 (MSWEP V2.8)
(https://www.gloh2o.org/mswep/); the Multi-Source Weather (MSWX)
(https://www.gloh2o.org/mswx/); the Global Inventory Modeling and
Mapping Studies LAI3g V4_1 (GIMMS3g_V4_1) (https://ecocast.arc.nasa.
gov/data/pub/gimms/); and the Global Map of Irrigation Areas (GMIA)
(https://www.fao.org/land-water/land/land-governance/land-
resources-planning-toolbox/category/details/en/c/1029519/). Source
data are provided with this paper.

Code availability
The codes for the analyses are available at https://zenodo.org/records/
13908543 93.
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These Terms are supplementary and will apply in addition to any applicable website terms and conditions, a relevant site licence or a personal
subscription. These Terms will prevail over any conflict or ambiguity with regards to the relevant terms, a site licence or a personal subscription
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To the fullest extent permitted by law, Springer Nature makes no warranties, representations or guarantees to Users, either express or implied
with respect to the Springer nature journal content and all parties disclaim and waive any implied warranties or warranties imposed by law,
including merchantability or fitness for any particular purpose. 
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